COMPUTATION OF STEADY-STATE TEMPERATURE
FIELD IN TURBULENT GAS FLOW IN TWO-DIMENSIONAL
CHANNEL WITH HEAT RELEASING WALLS

M. S. Povarnitsyn UDC 536.244:532.542.4

The steady state temperature field in a turbulent channel flow is computed analytically taking
into consideration the heat released from the dissipation of vortices and absorbed in the work
by the pressure forces., The turbulent thermal conductivity is represented by a piecewise
linear function of the transverse coordinate.

1. The temperature distribution in a two-dimensional channel with turbulent flow of the fluid has been
investigated in detail for steady-state temperature profiles both for the temperature specified at the walls
and for the heat releasing walls (for example, see [1]). However, apparently there have not been any in-
vestigations for determining the temperature taking into consideration the heat released from the internal
friction in the gas and absorbed in the work by the pressure forces. The object of the present work wasto de-
termine the steady-state temperature field in a channel with heat releasing walls analytically taking this
phenomenon into consideration. The thermophysical constants are assumed to be independent of tempera-
ture and the velocity is taken to be the average velocity over the transverse cross section of the channel.
The turbulent thermal conductivity k is approximated by two straight lines [2, 3}

K=1--khiyg=1--1(1—8 for & <E1 (.1
K=Ky=1--[(1-—§) for 0CECE,. (1.2)

In the immediate vicinity of the wall this distribution results in an enhanced total thermal conductivity,
since there

fgkyg ~ (1 —E&", m=3—4.

However, this does not distort the temperature profile significantly, since at the wall itself molecular ther-
mal conductivity predominates.

Using dimensionless quantities the heat conduction equation can be written in the following form taking
into consideration the heat from the internal friction and the heat absorbed in the work by the pressure
forces:

— 08 0

U —— =

ot 0%

K—a— S 13N (1.3)

The boundary conditions at the entrance and at the walls, and the conditions of symmetry are the following:

$=1 fo 7=0, (1.4)
08/ = —g for §=1, (1.5)
08/05 =0 for {=0. (1.6)
The matching conditions at £ = £, are
B, =0, 09,/05 = 00,/%. (1.7)

Here and below the temperature for the segment 0 < ¢ < £, is denoted by # and the temperature for the
segment £y = £ = 1 by .
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(1.8)

We take Laplace transform of (1.3) taking (1.1), (1.2) into consideration:
| o ulp® — 1) = Kd8i/dg - prp (8),
(1.9)

(€ — 1 —I3") d209/dE? - dO3/dE - uply'0; = A (8),

where
h(E) =uly" + % € (ply) ™ (1.10)
Equation (1.9) is a Bessel type equation and for h = 0 it has the following solution [4]
03(6) = Z,(y €) = AJ, () + BY, (1), (1.11)
where »
, YE =2l (1 - 7 — "2, = —p.
Knowing any homogeneous solution the particular solution can be found 4]. The complete solution is of the
form
’92 = ‘4']0 (y} i Byo (y) " (Pl-'; E_l(,fil_— (:) CPl ((5,') h (g’) dg’) d.g, (1‘ 12)
where
o E=Ell g =m0, (1.13)
g 1
(1.14)

We subject (1.12) to the condition at the wall (1.5):
dg'} dt — I | quhdgid (g

! ¢
ag = Z1 (yx) ]‘f;;'a - Jl (!/1) ]'/_JCL \ E"’(PTQ (j (flh
g to Eo

0

(1.15)
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a

Under the condition of symmetry (1.6) the solution of (1.8) is
¥ =Cq, (8) - 0uE5 " |
) 0

where ‘
Eo = £ (go)’ p, = COs (')‘oyog/go)-

The matching conditions (1.7) are formulated taking (1.12), (1.15) into consideration. Eliminating co-~
efficient C from these we obtain together with (1.14) a system for determining the coefficients A and B; the

solution of this system is
A=A} 1Y, (y,) cos ol == Yo () sint gty — N (A}
(1.16)

B=A" {"”fl [, (y,) cos Aoty - Iy {9,) sin Rolgl + f2J1 )}

Here we have used the following notations:
A=J(y) Y, (y,)cos Aoty + Y, (4,) sim Motie] — Y () [V () cos Moty ~+ Jg (4,) sin Aotols
s 1 —_ ! (1.17)
Fu=07g )™ 4y (i)™ [ ohdelly @) — Ty (0) [ B (| guide’) at,
& : o ‘é' )
(1.18)

E o ey 1 L e
o= —2y0 ] ‘ ©AdS g =y, Yo=y &) Ay = o L +5 : —§g)
g

In order to obtain the temperature §(7, £) we find the inverse transform of (1.12), (1.15). In particu-
lar, for determining the steady-state temperature field it is necessary to have the expansion of the obtained
solution in the neighborhood of @ = 0. Since the function $§(c) has a pole of multiplicity 1 and 2 at o = 0,

in the expansion of A(e) it is sufficient to consider terms 0(1) and O(e). The expansion of A gives

A = A, - Byow - 0 (@?), (1.19)

where
Ay = lob;l’ Boliz’/ U= 25, [(1 + 2hy) In by -+ Ay -+ kg] - /2,
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: 1 2
— 2% (T =+ 3 25 A8 - ;“0) s by = (1-+ Iy — LE)V2. (1.20)

The use of the two necessary copditions [1) for zero sources (g = ¢ =1 0) we must have &F = —a'l;

2) terms containing hy = —y/al, have only first order poles at a = 0, sinceS pdé = 0] gives the desired ex-
Q
pansion of the solution $F(c, £). Taking the inverse transform in this expansion we obtain the asymptotic
«~0

temperature distribution ) for 7 — « after computing the residues at the point p = 0 (practically for
1= 0.005):

- 1
1—9  t 1 1 i} 14—
P (1 | (1 =g | W | in— 2> B,
g u lo ( l(J)( £ ! )1n1+lll—l“_§0 )
- ’ SN 3 5
~Eh g [ £ (j «pdg’)dg— g"llg—lf E'l( ¢d§’>d§ 1.21)
(] o \ .
Eo o 133 133

o

; ' 1 &
— (145 Eobizg‘15¢d§+lo’2g“l In (1-+-4, — &1,) j 1|>d§+g‘1(lo_1 S' gwdg—j EUpdE /263 )
Eo g to 0

4

where

1 _ _
B, = - 2 2572 (1 + Y [lnb, 4+ A (1 4 Ag) (14 20)7Y

— A+t 2,2 [% -2, (14 Ag) % 2 ] 4 AE L

The solution depends on the parameters &, I; and the function ng'l.

The coefficient C is determined from the matching conditions and the temperature in the transformed
plane #* becomes

& 5 \
8 = Z, (0. 0. @/, &) — w © Eo' gﬁ o3 0\ ot | dE. (1.22)

Using the expansion of % we find the required expansion of function (1.22):
a0

& &
0 =056 — o @~ + Eae [( (v )@
i 0 ‘

a0 -0 (1.23)
Hence we obtain
1—8 _1—%(@ & H—8 —(gb?,)-ljf’(g ,
g g 26 ) Oj‘l’dg ) . (1.24)
2. In solution (1.21), (1.22) let us introduce the explicit dependence of function ¢ on the coordinate
S (12 ()
) kyfTa—To) ax  "\oy) ) 2.1)

Assuming that the rate of production of the turbulent energy is equal to the rate of its dissipation into
heat and also that the velocity u has a power law dependence u = um(l—g)i/ N we determine the turbulent
viscosity from the formula [2] vp= —hu%é/up,di/dg; then making use of the formula —dpP/dx = Tgh™ = pul
/h, where the dynamic velocity u, = umVA/8/(1 + 3.75/1/8), we obtain

P -1
$ = (1 —g)‘/"( 1— @-) ) 2.2)
1—-E§
Here
&, = (v — 1)65" MZRe Pr (/8)/(1 + 3.751 A/8)*. 2.3)

424



-8 For Blasius' law of friction

£, = 0.023 (y — 1) 65" Pr Re¥/*. 2-4)

-
~
= ]

The expression for y (2.2) satisfies the condition

nd

P ~ { pdg = 0. (2.5)
€g/8%5 -0
’ 2\\\/ f A comparison with Laufer's experiments (see [2]) showed that
" ! N / the production of turbulent energy, given by the second term in
‘0 / (2.2), corresponds to the experimental data everywhere except
. P y. in the immediate vicinity of the wall (y+ < 5 & > 1-§).

' / /: We express constant 7 in terms of the flow parameters.
— A Let us put ¢y = vp/uh, PrT =c 'nTkT, Pr = 'cpanl-\'/li:' Hence
29 R ade® kT/kM K—1=ggqu hv” PrPrT Expressing the dynamic veloc~

gl ity in terms of the frwtxon coefficient considering the adopted
F— = approximation ¢, = gg(1—£), where gy = 0.07(1—£,)~!, and com-
a7 paring with (1.1) we obtain
"o 94 g8 8 J— —
Fig. 1. Distribution of dimension- Iy = e, Re PrPry VA8 (1 + 3,751/ A/8)%. (2.6)
less temperature in the channel for From the comparison of &y and lo we obtain &g = Zgk.ly, where
T/u=1, [y=400, n =1, £ =0.75 £y = 05 Mb(y—1)Prop, ko =VA/Begt (1 + 3.75/A/8) 71,

for different values of the parame-

ters &)/g and 8. Dashes, & = 0; con- Substituting function ¥ (2.2) into solution (1.21), (1.24) we get

;u:)t:)ozuss curve, 0.005; dash-dots, 18! 18 &) B B_g
: ’ v 8 g 2(ly + 1 —5ply)
s [(1—&)”"“ e s
g+t —g) (n-;—l -1 a1 241 )] @.7)
. it s BN —1_2
1—9 __:i___lﬁ(l_:_"l__)[nLla_..«i_‘rBl
g u l0 lO 1 T lo B
BB . &k e @.8)
_Eoh ek [(210——1)%(1—,(»1 QN RN A
L, g
L2 A% (L — g il gy — L gy
=20 MGy (1 —&p)" — Pl ond (I—=E) (1 =5y “—7( +h —E) L.
Here s
LO= [ 80+ =970 — 9" — 1 — g
£ (2.9)
b [zFl(l, s L—u', 2 )————E{J S, —1—n"t, —n7L
7 - '
2t ]—-ﬂ(l—i)‘/"[zFl(l, , 1—n™, 2 1)—1—: F 1, —1—n, —p z”l)]
Il

where z = —ly(1—£), z; = —I (1—&y), ,F is hypergeometric function. Expanding (2.9) in powers of 2!, z7},

for |zl > 5 we obtain

L=n(l4+ &)1 —&)" — {1 =" — [l — g+

— (=7 4 — ) T — (1 — gy @.10)

ly{n —1)
+ nly (1—§)‘~T”‘(—-——1 18

2n—1 n—1

) 027, 279,

For |zl = 5 we can use the representation of the second term in (2.9) in terms of z.
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Next '
&

2 2 ; :
_2E3 L mEl gy

I, = 2 =
: Dsgwdg n+-1 214+1  3n+1

‘ 2.11)
(1 — B [”j:‘l” ;:i 2, (18 + (1—§0>2]

3. The function § (2.2) used in Sec. 2 leads to unreal large values of || at the wall giving overes-
timated value of the temperature. In order that ¢ correspond to the experimental data in the entire range
0 = ¢ = 1 and satisfy condition (2.5) we take

1P=§( g)‘/”(A—~ Erﬂ) for 0LE<CT—§; 3.1)
P =

1—¢§
fo 1—86<LEL], (3.2)

where
A=(1-+nY(1—s/)1—s+r)yt—nt AL

The dimensionless coordinate 6 corresponds to the universal coordinate y* = 5: & = 5Preyy/ljPro.

We make use of (3.1), (3.2) for evaluating the integrals in (1.21):

1
§ e =%, (6" (1 —B,0) — (1 — &) (1 —B, (1 = E,
Eo T

L) =— § B ([ o' ) de = 1,01 — 6) + %, 168" (1 = B,8) — (1 — £ (1 + ByEy — Bl In (1 = 81y,
&

jg €— e =&, (1— &)™ {I—_l—;[ 1 — ( 1_6§0 )1+n-1]

> .
el Rl ey B 1

gﬂ
‘ ~{An-+-1 24n-+3, An-+3
2 = f N < TV ] (] —E N/
ngpdg 131 2n1 ntl B E").
[(]
LTAn+3  (1—E)RAn-+3) | (1 —E)p(An+1) ]}
_— —_ 14n —
(=% [n+3 2n + 1 B 3n -1 '
- 1+ 65—t
= —g ) (1 — In——2 "= &1,
(g[gl(_g_g) €, (1 go) (1 ﬁ1+ goﬁl) i 1+ l“—&o 7 @,

1<§>—n[(1—§0)1/"~(1—§) /a} — "ﬁl 10— By — (1 — g
(I —E) " a M — ) B (1 —E)] + (1 —B) 2 [(n— 1)

- 1 I—&y | 9 -
+ B (18 +2 2”“‘5)“’"(2n_1 —B 5| 0 7

For 0s¢ =<4,

2 2 .
9 =03 (1, &) + % &0 —b%g — gk (1 6 —E)? { (1—B,) € —8

— (1 —E)Hm] — s 1 — E2Hat (] — Ej2tn }
1+ (1—8) 2n+1[( &) (I — g7

4. From an analys1s of the expression (2.8) for the temperature we note that the temperature is de-
termined mainly by the term sokollg‘1 with the factor l removed; I;({) increases rapidly as the wall is
approached (for £ — 1).” The index n is expressed [2] in terms of the coefficient of friction n = A~ 172 from
which we get ky ~n~! for £) = 0.75.

The results of computations carried out with formulas 2.7), (2.8) (6 = 0) for 1, =400 Re =4.5° 104,
Pr/PrT = 0.75), &§,=0.75, 651 =4, n="1, Eog'1 =0, 1/2, 1, 2, 5, are shown in Fig. 1. The temperature
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increases appreciably at the wall and falls off in the central part of the channel compared to the case Eog'1
= 0. The assumed thermal conductivity (1.1) results in a logarithmic dependence of the temperature near
the wall for ¢ = 0. The temperature computed from the formulas of Sec. 3 with the same values of the
parameters and 6 = 0.005, 0.0025 are also shown in the same figure. The values of the temperature near
the wall are lower here.

5. Let us determine the Nusselt number
1

Nu'= & (T/dg), (T — Ta )t = — g (8% — | 00 )

0

—1

Substituting (1.21), (1.24) we obtain -
Nu = 27, [(1 -+ 26" — I In by — (1— &) (5 — & -+ 25 ) -+ 2831,/3b5] . (5.1)

Computations from formula (5) for Pr = 0.8, Pro = 1, Re = 104-10° gives values of Nu close to the experi-
mental values found from the formula Nu = 0,021 Re’#pr!/? (higher than these by 5-10%). However, (5.1)
does not give the experimental dependence Nu ~ Pr!/%, In order to obtain this dependence it is necessary
to assume a nonlinear profile K(¢) near the wall.

NOTATION
b ' is the thickness of the thin wall of the channel thermally insulated from outside;
Cp is the specific heat;
G is the power density of the heat sources in the walls;
2h is the width of the channel;
dis Yj are the Bessel functions of the first and second kind;
kypy k are the molecular and turbulent thermal conductivities;
p is the variable in the transformed plane;
P is the pressure;
T is the temperature;.
Ty, Tp are the temperatures at the entrance to the channel and in the nominal state (T, > T);
u is the longitudinal flow velocity;
i= u/um;
Uy is the maximum velocity;
u, is the dynamic velocity;
Xy are the coordinates along and transverse to the channel;
Ox is reckoned from the front section of the heated segment;
oy is reckoned from the midpoint of the channel;
a = —p; ' '
y = cp/cv;
T = p Uy is the coefficient of turbulent viscosity;
v is the kinematic viscosity;
A is the coefficient of friction (number Re occurring in A is determined by the hydraulic
diameter D = 4h);
M, is the Mach number;

D is the density;
g = Ghb/kp (T —Ty);

$ = (Tp—T)/(Ty~Tg)h

89 = (Tn—ToTy's §=y/
7=x/hPrRe;

Re = um/h",';

u= (hum}_lflldY;
[
¥y =u,b—y)/1
By = (An + 1)@ + 1)L,
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